Formation Ingénieur Informatique

Mathématiques: PROBABILITES

Cours Michel GOZE

Chapitre 3

Un exemple d'espace probabilisé fini: le modèle de Bernoulli

1. Produit d'espaces probabilisés

1.1. Produit d'ensembles.

Définition 1. Soient E et F deux ensembles. On appelle ensemble produit, l'ensemble noté $E \times F$ et dfini par

$$E \times F = \{(a, b), \ a \in E, \ b \in F\}.$$

Par exemple, si $E=\{1,2,3\}$ et $F=\{a,b\}$, alors

$$E\times F=\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$$

On généralise aisément cette définition en considérrant le produit de n ensembles: soient E_1, \dots, E_n n ensembles. Alors

$$E_1 \times E_2 \times \cdots \times E_n = \{(x_1, x_2, \cdots, x_n), x_1 \in E_1, x_2 \in E_2, \cdots, x_n \in E_n\}.$$

Proposition 1. Soient E un ensemble fini contenant p éléments et F un autre ensemble fini contenant q éléments. Alors l'ensemble produit $E \times F$ est fini et contient pq éléments.

Exemple. Soit $E = \{s, e\}$ un ensemble à deux éléments. Alors $E \times E$ noté 'galement E^2 contient 2^2 éléments:

$$E^2 = \{(s, s), [(, e), (e, s), (e, e)\}.$$

Dans ce cas précis, nous 'crirons les couples comme des mots à deux lettres:

$$E^2 = \{ss, se, es, ee\}.$$

Avec cette notation, E^3 sera l'ensemble des mots à trois lettres construits à partir des seules lettres s et e:

$$E^3 = \{sss, sse, ses, ess, see, ese, ees, eee\}$$

et donc contient 2^3 éléments. Plus généralement E^n sera composé de mots de longueur n à partir des seules lettres s et e. Il contient 2^n éléments.

Soient $A \in \mathcal{P}(E)$ et $B \in \mathcal{P}(F)$ deux sous-ensembles de E et F respectivementt. Alors $A \times B$ est le sous-ensemble de $E \times F$ d'fini par

$$A \times B = \{(a, b) \in E \times F, a \in A, b \in B\}.$$

En particulier on a

(1)
$$A \times B = (A \times F) \bigcap (E \times B).$$

1.2. Produit de deux espaces probabilisés.

Soient $(\Omega_1, \mathfrak{F}_1, P_1)$ et $(\Omega_2, \mathfrak{F}_2, P_2)$ deux espaces probabilisés. Considérons le produit $\Omega_1 \times \Omega_2$ et la tribu sur cet ensemble produit engendrée par $\mathfrak{F}_1 \times \mathfrak{F}_2$. C'est la plus petite tribu sur $\Omega_1 \times \Omega_2$ contenant les ensembles $A \times B$ avec $A \in \mathfrak{F}_1$ et $B \in \mathfrak{F}_2$. Par abus, on la notera $\mathfrak{F}_1 \times \mathfrak{F}_2$. Par exemple, si $\mathfrak{F}_1 = \mathcal{P}(\Omega_1)$ et $\mathfrak{F}_2 = \mathcal{P}(\Omega_2)$, alors $\mathfrak{F}_1 \times \mathfrak{F}_2 = \mathcal{P}(\Omega_1 \times \Omega_2)$.

Définissons à présent une probabilité sur $\Omega_1 \times \Omega_2$. Soient $A \in \mathfrak{F}_1$ et $B \in \mathfrak{F}_2$. Alors $A \times B \in \mathfrak{F}_1 \times \mathfrak{F}_2$. Pour définir une probabilité P sur $\Omega_1 \times \Omega_2$, utilisons l'identité (1):

$$A \times B = (A \times F) \bigcap (E \times B).$$

On aura

$$\begin{cases}
P(A \times F) = P_1(A), \\
P(E \times B) = P_2(B).
\end{cases}$$

Si les évènements $A \times F$ et $E \times B$ sont ind'pandants, ce qui sera v
rai dans la plupart des cas, alors

$$P(A \times B) = P((A \times F) \cap (E \times B)) = P(A \times F)P(E \times B)$$

et donc

(2)
$$P(A \times B) = P_1(A)P_2(B).$$

Exemple. Soit $\Omega = \{s, e\}$ un espace probabilisé fini à deux éléments. Sa tribu est $\mathcal{P}(\Omega)$ et la fonction de probabilité P_1 est définie par

$$P_1(\{s\}) = p, P(\{e\}) = q = 1 - p$$

avec $0 . Considérons l'espace produit <math>\Omega^2$. La fonction probabilité est définie par

$$P(\{ss\}) = P_1(\{s\})P_1(\{s\}) = p^2$$
, $P(\{se\}) = P(\{es\}) = P_1(\{s\})P_1(\{e\}) = pq$, $P(\{ee\}) = q^2$.
Soit $A \subset \Omega^2$ l' évènement défini par

$$A = \{ss, se, es\}$$

Michel Goze 3

. Alors

$$P(A) = p^2 + 2pq = 2p - p^2.$$

1.3. Produit de n espaces probabilisés.

On généralise au cas d'un produit d'un nombre quelconque d'espaces de probabilité, les résultats ci-dessus. Soient $(\Omega_k, \mathfrak{F}_k, P_k)$, $k = 1, \dots, n$, une famille de n espaces probabilisés. Considérons le produit

$$\Omega = \Omega_1 \times \Omega_2 \cdots \times \Omega_n$$

et la tribu sur cet ensemble produit engendrée par $A_1 \times \cdots \times A_n$ avec $A_k \in \mathfrak{F}_k$. On définit la probabité P sur Ω par

$$P(A_1 \times \cdots \times A_n) = P_1(A_1)P_2(A_2)\cdots P_n(A_n).$$

Cela suppose, dans ce cas aussi, que les évènements $\Omega_1 \times \cdots \times A_k \times \cdots \times \Omega_n$, $k = 1, \dots, n$ sont indépedants.

Exemple. Soit $\Omega = \{s, e\}$ un espace probabilisé fini à deux éléments. Sa tribu est $\mathcal{P}(\Omega)$ et la fonction de probabilité P_1 est définie par

$$P_1(\{s\}) = p, P(\{e\}) = q = 1 - p$$

avec $0 . Considérons l'espace produit <math>\Omega^n$. La fonction probabilité est définie par

$$P({u_1 \cdots u_n}) = P_1({u_1}) \cdots P_1({u_n})$$

avec $u_i \in \{s, e\}$. En particulier

$$P(\{ss\cdots s\}) = p^n, \ P(\{ee\cdots e\}) = q^n.$$

2. Le modèle de Bernoulli

2.1. Rappel: les coefficients binomiaux.

Les coefficients binomiaux sont les entiers

$$C_n^k = \frac{n!}{k!(n-k)!}$$

définis pour $0 \le k : leqn$. Rappelons que, par convention, 0! = 1. Ces coefficients apparaissent dans le dénveloppement du binôme:

$$(x+y)^n = x^n + C_n^1 x^{n-1} y + \dots + C_n^k x^{n-k} y^k + \dots + C_n^{n-1} x y^{n-1} + y^n.$$

En analyse combinatoire, C_n^k correspond au nombre de parties non ordonnés (ou de combinaisons) formées de k éléments distincts dans un ensemble de n éléments.

Ils vérifient la relation

$$C_n^{k-1} + C_n^k = C_{n+1}^k$$

cette relation permet de construire le fameux triangle de Pascal, appelé aussi triangle de Tartaglia.

2.2. Epreuve de Bernoulli. Soit $\Omega,/F,P)$ un espace probabilisé fini. Soit $A\in\mathfrak{F}$ un é . Posons

$$P(A) = p, \ P(\mathbf{C}_{\Omega}A = q = 1 - p.$$

Le rel p représente la probabilité d'un succès, c'est-à-dire que l'évènement A soit réalisé et le réel q=1-p représente la probabilité d'un échec. La définition du succès et de l'échec est conventionnelle et est fonction des conditions de l'expérience. Une telle situation est appelée une preuve de Bernoulli.

Exemples.

(1) Le lancer d'une pice quilibrée est une expérience de Bernoulli de paramètre p=0,5.

$$\Omega = \{h, t\}$$

(h désigant le côté pile et t le côté face, head and tail en anglais). Si le succés est l'obtention de pile, l'échec est l'obtention de face. On prend donc $A = \{h\}$. alors

$$P(A) = 0, 5 = p, P({t}) = 1 - 0, 5.$$

(2) On tire au hasard une boule dans une urne contenant 6 boules blanches et 2 boules noires. On a ici

$$\Omega = \{B_1, \cdots, B_6, N_1, N_2\}.$$

On considère comme un succès le fait de tirer une boule noire. On a donc comme évènement

$$A = \{N_1\} \bigcup \{N_2\}.$$

On a

$$P(A) = \frac{2}{8} = \frac{1}{4}.$$

Cette expérience est une expérience de Bernoulli de paramètre 0, 25.

2.3. Schéma de Bernoulli.

 $\operatorname{Soit}(\Omega, \mathfrak{F}, P)$ un espace probabilisé fini et soit $\omega \in \Omega$. Supposons que

$$P(\omega) = p$$
.

(en fait il faudrait écrire $P(\{\omega\}) = p$. Considérons l'espace

$$\Omega_1 = \{\omega, e\}$$

contenant 2 éléments munie de sa tribu $\P(\Omega_1)$ et de la probabilité donnée par

$$P_1(\omega) = p, \ P_1(e) = q = 1 - p.$$

Soit n un entier donné et considérons l'espace produit Ω_1^n . Un "mot" de Ω_1^n est un mot de n lettres chacune égale soit à ω soit à e. Munissons Ω_1^n de la fonction probabilité définie sur les espaces produits. Elle vérifie

$$P_n(u_1u_2\cdots u_n)=p^kq^{n-k}$$

s'il existe i_1, \dots, i_k tels que $u_{i_j} = \omega$ pour $j = 1, \dots, k$, les autres u_i étant égaux à e.

Ceci s'interprète en disant que nous avons répété l'expérience associée à Ω n fois et que l'on regarde si l'évènement/ ω de probabililité p est apparu k fois. On appelle ceci un schéma de Bernoulli de paramètres n et p.

Michel Goze 5

Théorème 1. Considérons un schéma de Bermoulli de paramètres n et p. Soit $p_n(k)$ la probabilité pour que l'évènement ω apparaisse k fois lorsque l'expérience Ω est répétée n fois. Alors

$$p_n(k) = C_n^k p^k (1-p)^{n-k}$$
.

 $D\'{e}monstration$. En effet, Ω_1^n contient 2^n éléments. Si u est un mot de Ω_1^n constitué de n lettres parmi ω et e, sa probabilité, et si ω apparaît k fois dans ce mot, sa probabilité est $P_2(u) = p^k q^{n-k}$. Comme il existe C_n^k mots de ce type dans Ω_1^n , on en déduit le résultat.

Exemples.

(1) Soit Ω l'expérience cossitant à jeter une pièce de monnaie non équilibrée. On a l'espace probabilisé

$$\Omega = \{h, t\}, \ \mathfrak{F} = \mathcal{P}(\Omega)$$

et la probabilité est entièrement donnée par

$$P(h) = p, \ P(t) = q = 1 - p.$$

On s'intéresse à l'évènement "c'est pile (h) qui sort". Ici $\Omega_1 = \Omega$ et donc la probabilité pour que "pile" sorte k fois lors de n lancers est

$$C_n^k p^k (1-p)^{n-k}$$
.

(2) On lance une paire de dés et on note le résultat donné par la somme des chiffres qui apparaissent. Ainsi

$$\Omega = \{2, 3, \dots, 11, 12\}, F = \mathcal{P}(\Omega).$$

Déterminons la probabilité sur Ω correspondant au cas où les dés sont équilibrés et identiques, donc indiscernables lors du lancer. On montre facilement que

$$\begin{cases} P(2) = P(3) = P(11) = P(12) = \frac{1}{21}, P(4) = P(5) = P(9) = P(10) = \frac{2}{21}, \\ P(6) = P(7) = P(8) = \frac{3}{21}. \end{cases}$$

On s'intéresse au résultat "la somme vaut 7"". Ainsi

$$\Omega_1 = \{7, e\}$$

avec comme probabilité

$$P_1(7) = p = \frac{3}{21}, \ P_1(e) = \frac{18}{21}.$$

On considère le schéma de Bernoulli correspondant à 5 lancers. La probabilité pour avoir 3 fois la somme 7 lors de ces 5 lancers est

$$p_5(3) = C_5^3 \left(\frac{3}{21}\right)^3 \left(\frac{18}{21}\right)^2 = \frac{5!}{2!3!} \frac{3^3 \cdot 18^2}{21^5} = 10 \frac{36}{7^5}.$$

3. Les théorèmes de de Moivre-Laplace et de Poisson

3.1. Sur le calcul des $p_n(k)$.

On se rend vite compte que le nombre C_n^k est assez difficile à évaluer. En effet

$$C_n^k = \frac{n!}{k!(n-k)!}$$

lorsque n est assez grand n'est plus calculable. Prenons par exemple n = 100 et k = 50. Alors

$$C_{100}^{50} = \frac{100!}{50!50!} = \frac{100 \cdot 99 \cdot \dots \cdot 51}{50 \cdot 49 \cdot \dots \cdot 2}$$

qui n'est guère calculable. Le but de ce paragraphe est de montrer comment approximer le résultat.

3.2. Le théorème d'approximation de de Moivre-Laplace.

Soit s un entier naturel. Supposons que s soit "très grand" par rapport à 1. On notera cette relation d'ordre

$$s >> 1$$
.

La notion de très grand n'est pas définie, mais imaginable!

Théorème 2. Soient n, p, q = 1 - p des entiers tels que npq >> 1. Alors

(3)
$$C_n^k p^k q^{n-k} \simeq \frac{1}{\sqrt{2\pi nq}} \exp\left(-\frac{(k-np)^2}{2npq}\right).$$

Ici le symbole \simeq signifie "à peu près égal". L'intérêt de cette formule est de donner une valeur approchée facile à calculer. En effet la fonction $\exp X$ est définie sur n'importe quelle calculette scientifique et le réel $X=-\frac{(k-np)^2}{2npq}$ pour lequel nous devons calculer l'exponentielle est un nombre tout-à-fait standard.

Exemple. Prenons n = 100, $p = q = \frac{1}{2}$ et k = 50. Alors

$$C_n^k p^k q^{n-k} = C_{100}^{50} \left(\frac{1}{2}\right)^{50} \left(\frac{1}{2}\right)^{50} = \frac{100!}{50!50!} \left(\frac{1}{2}\right)^{100}.$$

Calculons $\exp\left(-\frac{(k-np)^2}{2npq}\right)$.

$$\exp\left(-\frac{(0)^2}{50}\right) = 1.$$

Comme npq=25 peut être considéré comme grand par raport à 1, le théorème de de Moivre-Laplace donne

$$C_{100}^{50} \left(\frac{1}{2}\right)^{50} \left(\frac{1}{2}\right)^{50} \simeq \frac{1}{\sqrt{2\pi 50}} = \frac{1}{10\sqrt{\pi}} \simeq$$

Michel Goze 7

3.3. Le théorème d'approximation de Poisson.

Dans le paragraphe précédent, nous avons approché la valeur de ${}^k_n p^k q^{n-k}$ lorsque le produit npq était grand par rapport à 1. Ici nous nous intéressons au cas où n est très-très grand $(n \to +\infty)$ et p très-très petit $(p \to 0)$, .mais le produit np restant limité.

Théorème 3. Suppsons que
$$\begin{cases} n \to +\infty \\ p \to 0 \\ np \simeq a \end{cases}$$
Alors
$$\lim_{n \to +\infty} C_n^k p^k q^{n-k} = \exp(-a) \frac{a^k}{k!}$$